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SUMMARY 

A numerical method for computing high-Re laminar steady flows is presented. The incompressible 
Navier-Stokes equations are expressed in terms of vorticity-velocity variables, discretized in space by finite 
differences on a staggered grid and advanced in time by a scalar alternating direction implicit (ADI) 
procedure, which allows a fully vectorized computer code. The accuracy and efficiency of the present 
formulation are discussed in comparison with the standard m-tj and u, u, P forms. Numerical results are 
presented for two test cases: the driven cavity at Re up to 5000 and the backward-facing step at Re 
up to 800. 
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1. INTRODUCTION 

The difficulties in obtaining stable and accurate numerical solutions of the incompressible Navier- 
Stokes equations for laminar flows increase with the Reynolds number and require the use of 
appropriate mathematical formulation and numerical technique. 

Stability can be assured by expressing the convective terms in a convenient form and by adopting 
appropriate time integration procedures, both measures not requiring large computer storage and 
CPU time. On the contrary, accuracy is strictly connected with the structure of the flow field, which 
becomes more and more complex as the Reynolds number increases. In fact, the various 
recirculating vortices and the high gradients of velocity, located mainly in corner and wall regions, 
require a high resolution, leading to a very small local mesh size. For this reason in the earlier 
studies, when computing power had not yet reached the level of mega instruction per second 
(MIPS) available today, attention was mainly devoted to the issue of stability. For instance, some 
authors have contributed to the study of stability and thus convergence to steady state of numerical 
methods, proposing algorithms based on the conservation of integral properties,' upwind schemes 
and numerical vis~osity,',~ almost Lagrangian grids4 and adaptive grids.5 

In the last decade developments in computer hardware technology and in numerical techniques 
have permitted the treatment of problems with more complex flow structure. Three different 
techniques may be adopted to obtain the necessary spatial resolution: local mesh refinement,6 co- 
ordinate transformation' and very fine but uniform mesh.*-'' The first two approaches allow us to 
concentrate the computational points only in the critical subregions (boundary or interior layers) 
of the problem domain, saving computer storage, but the field equations become more complex to 
account for the non-Cartesian and possibly irregular character of the mesh. The last approach pays 
for the simplicity of the resulting discretized equations and the accuracy connected with the 
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regularity of the mesh with the need for very large storage and number of operations. 
Several mathematical formulations of the Navier-Stokes equations have been developed which 

may be divided into the following categories, depending on the choice of dependent variables: 

(a) primitive  variable^^,^','^ 
(b) vorticity-streamfunction,10~13 which in three dimensions extends to the vorticity-vector 

(c) vorticity-velocity.1'--18 

All of these formulations have been used to obtain discretized forms of the Navier-Stokes 
equations by finite difference or finite element techniques. A variety of numerical results have been 
presented by many authors for the first two formulations at Reynolds numbers up to 10000, 
however, only a few studies have been conducted using the last formulation. The earliest 
contribution was the study of the stability of two-dimensional boundary layers by FaselI6 which 
solved the real time-dependent problem by coupling the equation system using an iterative 
procedure. Dennis et ~ 1 . ' ~  extended the w, u, ti formulation to three-dimensional steady flows by 
solving the Navier-Stokes equations in a cubical driven box. Gatski et u1." applied compact finite 
difference schemes to the vorticity-velocity form of the two-dimensional unsteady Navier-Stokes 
equations. Fasel and Booz2' investigated the axisymmet ric supercritical Taylor vortex flow for a 
wide gap. Farouk and Fusegi2' studied the natural and forced convection and heat transfer in a 
two-dimensional annulus. Orlandi22 solved high-Re flows using a block AD1 method which 
coupled field equations and boundary conditions and satisfied the continuity equation without 
requiring an iterative procedure. 

In the present study we describe a numerical technique, based on the vorticity-velocity 
representation, for calculating steady state solutions of the two-dimensional Navier-Stokes 
equations. This formulation is simpler than the primitive variable one, because the pressure does 
not appear explicitly in the field equations so the well-known difficulty connected with the 
determination of pressure boundary values in incompressible is avoided. Furthermore, the 
use of physical variables w, u, ti makes this formulation more versatile than the w-$ one, in 
particular in the solution of multiconnected problem.'" It is noteworthy that our numerical 
tests indicate that the residual trend in the iteration space, the total number of iterations and 
the steady state solution of the w, u, u formulation keep very close to those of the w-$ approach. 
Of course the solution of one more Poisson equation requires about 50% more operations in 
the two-dimensional case, but in the three-dimensional case the number of equations to be solved 
using the vorticity-velocity representation equals that of the vorticity-vector potential form.14 

The individual numerical techniques employed in the present study are only partially original 
and may be summarized in the following steps: 

(1) The variables are located on a staggered grid to satisfy better the continuity equation on 
individual cells. 

(2) The equations are discretized by second-order accurate central differences on a uniform 
Cartesian mesh. 

( 3 )  The conservative form is adopted for the vorticity transport equation to verify the 
conservation of mean vorticity. 

(4) The Poisson equations for u and ti are parabolized in time so that they are exactly solved at 
the steady state only. 

(5) An alternating direction implicit (ADI) method is used to integrate in time the three 
equations governing w, u, u. 

(6)  The numerical procedures are implemented in a FORTRAN code designed to run efficiently 
on a vector computer for a typical mesh up to 100 x 100 points. 

p~ten t ia l '~ . '  
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The characteristics of the mathematical formulation and the derivation of the basic equations are 
presented in Section 2. The form of advective term that implies the conservation of integral 
quantities, in particular of total vorticity, is discussed in Section 3. The characteristics of the 
discretized equations obtained by the finite difference method, the AD1 time integration procedure 
and the peculiarities of the numerical code are explained in Section 4. The driven cavity problem is 
considered in Section 5, where the present results are compared with available n u m e r i ~ a l * . ~ * ~ ~ - ~ ~  
and e ~ p e r i m e n t a l ~ ~  findings for Reynolds numbers up to 5000. The flow past a backward-facing 
step is finally analysed in Section 6, the analysis providing a very convincing proof of the stability of 
the method even in the presence of a through-flow problem. Experimental measurements26 and 
some available numerical r e s ~ l t s ~ ~ , ~ ~ , ~ '  are used to assess the accuracy of the proposed method. 
Concluding remarks are reported in Section 7. 

2. NAVIER-STOKES EQUATIONS IN TERMS O F  VORTICITY-VELOCITY 

The Navier-Stokes equations for laminar plane flow of an incompressible fluid may be written in 
vorticity-transport form as 

w, + (uo), + (vw), = (1/Re)V2w, (1) 

u, + vy = 0. 
Here Re is the Reynolds number 

Re = u'Lfv, 

where v is the kinematic viscosity and u' and L are a characteristic velocity and length scale 
respectively. The vorticity w is defined as 

w = v, - u,. (3) 
If equations (1) and (2) are written in terms of the vorticity w and streamfunction $, the 

velocity components in the advection term are computed as derivatives of *, namely 

u=*,, v =  -*,, (4) 
whereas $ is computed by solving the Poisson equation 

0. 2 v *=- ( 5 )  

Taking appropriate derivatives of the vorticity definition (3) and using the continuity condition 
(2), the following Poisson equations for the velocity components u and v result"? 

v 2 u  = - m y ,  (6) 

v2v = w,. (7) 
Equations (6) and (7) together with (1) represent the complete set of the Navier-Stokes 
equations in w, u, v form. 

The proposed numerical procedure is based on the discretization of the parabolic equation (1) 
and the following parabolized version of the velocity equations: 

Reu, - V2u -0, = 0, 

Rev, - V2v + ox = 0. 
(8) 

(9) 
The boundary conditions for the driven cavity problem are sketched in Figure 1. In particular, 

the zero-slip and impermeability conditions are enforced at all solid walls for velocity equations (8) 
and (9) and boundary conditions for equation (1) are given by the definition of o, equation (3). 
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Figure 1.  Sketch of a driven cavity, boundary conditions and standing vortices 

3. CONSERVATIVE FORM OF THE CONVECTIVE TERM 

It is well known that the numerical instabilities and solution inaccuracy at large Re are strongly 
dependent on the form used for the convective term. To illustrate the importance of the treatment 
of the convective term and to focus the attention on this aspect only, consider first the vorticity 
transport equation in divergence form for an inviscid fluid: 

w, + (uo), + (uw)y = 0. (10) 
Since the advection of a scalar quantity (like vorticity) in two-dimensional flow is expressed by a 

Jacobian, strong integral constraints follow from the nature of the Jacobian itself.' In particular, 
the following quantities have to be conserved in time, in a closed domain with an impermeable 
boundary: the mean vorticity, the mean kinetic energy and the mean square vorticity (enstrophy). A 
finite difference scheme should satisfy all these constraints to be fully conservative, leading to 
Arakawa's spatial discretizations for the advection term. Otherwise the artificially produced 
quantities may grow, leading to numerical instabilities. 

Anyway, for the Navier-Stokes equations the exact conservation of quadratic quantities is not as 
important as for equation (lo), because the square vorticity and the energy possibly generated by 
the discretized advective term and by the enforcement of the boundary conditions are partially 
dissipated by the effect of viscosity and do not spoil the stability of the solution. On the otherhand, 
the mean vorticity must be exactly conserved in the case of Navier-Stokes equations as a 
consequence of the Stokes theorem, to avoid numerical instabilities. This latter condition is 
satisfied by either the conservative (divergence) form or the Arakawa scheme,' the choice being 
constrained only to accuracy criteria. Preliminary tests have shown a comparable accuracy of the 
two forms. The standard conservation form is adopted in the present work because the discrete 
equations are easily constructed and the boundary conditions on vorticity are straightforward.'O 

4. NUMERICAL MODEL 

The governing equations (l), (8) and (9) are discretized by central second-order finite differences 
and solved on a uniform mesh via the false time-dependent method.** The choice of location of 
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variables in the computational molecule is a crucial point to satisfy the continuity equation if the 
velocity is taken as one of the  unknown^.'^ In the present o, u, v formulation the mass conservation 
equation requires the total flux to be zero across cell sides and consequently the velocity 
components have to be located at the cell midside (Figure 2). In this way the main features of the 
MAC scheme introduced by Harlow and Welch29 for the u, v, P representation are adapted to the 
present approach. 

The resulting algebraic problem for large Reynolds numbers is dominated by the non-linear 
convective terms, and therefore the linearization and the iterative procedure are very important in 
the solution algorithm. The discretized problem results in a large system of equations of the type 

A(x)x = b, (1 1) 

where x is the unknown vector and b is a known vector. The coefficient matrix A is a large 3 x 3 
block matrix with a banded and sparse structure. The direct solution of equation system (1 1) is not 
possible due to the non-linearity of the problem, so that an iterative procedure is required. The 
splitting of the time step overcomes the problem of storing and inverting matrix A, because in each 
half time step A is reduced to a sequence of 3 x 3 block tridiagonal problems which can be solved 
by a block tridiagonal procedure. 

We propose the use of the simpler AD1 procedure of scalar type for each of the three equations 
separately to give a fully and easily vectorizable algorithm. 

The line iteration is organized in such a way that the equations are coupled at  the same half time 
step for velocity equations and at the previous half time step for vorticity equations, as explained in 
the following. In particular, these minor differences appear in comparison with the block AD1 
method: 

(i) The non-linear convective term 

(urn), + (vO)y (12) 
should be computed at the new half time step n + 1/2: 

( u f l + 1 / 2 0 n + 1 / 2 ) x  + (u"o")y. 

In the block AD1 method this term may be discretized in time as22 
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In the proposed scalar AD1 method the term becomes 

L + ( U " 0 y .  (1 5 )  (U"gn  + 1 / 2  

At the second half time step n + 1 the term (12) is treated analogously. 

possible with block AD1 algorithm, 
(ii) Boundary conditions on the vorticity o cannot be enforced at the same time step n as is 

con = U ;  - ti;, (16) 

X (17) 

but at  the previous half time step n - 1/2, 

on = l j Z  - Un-- 1/2 
Y .  

All the other terms are treated in the same way by the two methods. In a preliminary work we 
have compared the efficiency and stability of block AD1 and scalar AD1 methods for high-Re 
flows, finding quite similar stability characteristics but a computation time about four times 
greater for the block AD1 method. In fact both methods require a large number of iterations 
to find the steady state solution, owing to the non-linear convective term described in (i) and 
the splitting in time of the vorticity-transport equation (1) and the parabolized velocity 
equations (8) and (9). 

The discretized form of the time derivative of the vorticity in equation (1) and the relaxation-like 
time derivative in equations (8) and (9) are exactly the same, so that the three derivatives vanish 
analogously when the steady state solution is reached and a At of the same order of magnitude can 
be adopted for the three equations. 

To verify the stability characteristics of the proposed method in comparison with the standard 
0-1) formulation, equation (5) as also parabolized in time, as previously described, to obtain the 
governing equations proposed by Benjamin and Denny." 

To highlight the difference between the two formulations,, the driven cavity problem (Figure 1) is 
solved for Re up to 5000 using the same time step and discretization grid (40 x 40). Very close 
residual trends in time and the number of iterations are obtained for the two formulations. 
Moreover, the steady solutions coincide, as shown by the extreme values of velocity reported in 
Table I for Re = 400 and 5000. The extremes in velocity of the solution obtained by the artificial 
compressibility method'' using a staggered mesh3' are also shown in Table I. The comparison 
shows that the difference is less than 0.2%. 

Because of the large number of grid points and iterations involved, particular attention is 
devoted to the vectorization of the numerical code so that a CRAY-1 computer may be usefully 
utilized. The scalar AD1 approach is particularly suited to this purpose, since in the splitting 
operation the linear systems of equations, derived by the discretization of each line, are uncoupled. 
Therefore they may be solved simultaneously, leading to a fully vectorized code. 

The efficiency of the proposed code in comparison with one that is not vectorized is clearly 

Table I. Extremes in velocity for the driven cavity problem 

Re = 400 Re = 5000 
w, u, V m-* u, 0, p w, 4 up* 

40 x 4 0  40 x 4 0  40 x 40 40 x 4 0  40 x 4 0  

Urnin -0.3180 -0.3180 -0,3178 -0.3124 -0.3124 
v,,, 0.3024 0.3024 0.3020 0.3022 0.3022 
Urnin - 0.6033 - 0'6033 - 0.6032 - 0.5352 - 0.5352 
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Table 11. CPU time in seconds 

l t x  11 21 x 2 1  41x41  

CRAY-1 vectorized 0.13 1.0 6.5 
CRAY - 1 scalar 0.37 4.5 43.4 
UNIVAC 1100 2.00 55.0 480.0 
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Figure 3. Mesh dependence at Re = 400 

demonstrated by the computer time needed, on the CRAY-1, to solve the driven cavity test case for 
different numbers of grid points, as shown in Table 11. 

5. DRIVEN CAVITY TEST CASE 

A lid driven cavity problem has been studied first, a large number of numerical bench-mark 
solutions and a few experimental results being available. The geometry of the domain, the 
boundary conditions and the nomenclature of several standing vortices are shown in Figure I. 

Our attention is first devoted to the evaluation of the grid dependence. The numerical prediction 
of Ghia et al.' is taken as the reference solution at Re = 400. 

In Figure 3 both u and u velocity components at the middle are plotted for an increasing 
number of grid points up to 100 x 100 and compared with Ghia et d ' s  results obtained with 
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a 129 x 129 grid via a multigrid technique. Very good agreement is found for both maximum 
velocity position and value. At Re = 5000 good agreement is found only for the position; the 
maximum velocity predicted for a 100 x 100 grid is about 8.5% less than that of Ghia et a!. 
obtained with 257 x 257 grid points as shown in Figure 4. This is explained by poor resolution 
of the boundary layer for Re larger than 1000. 

To give more quantitative information on the extremes in velocity, the present values 
are compared with those of Ghia et aL8 and Gresho et aL3' for Re = 1000, 3200 and 5000 
in Table 111. 

The size of the downstream secondary eddy as a function of Re is taken as a characteristic 
macroscopic quantity because it seems to show the largest discrepancies between the numerical 
predictions. In Figure 5 the predicted and measured dimensionless sizes D,/D of the downstream 
secondary eddy are plotted as reported by Koseff and Street,25 together with the present 
numerical results. 

All the numerical studies agree well each other but predict a separation region larger than that 
observed experimentally. In particular, the present results, like most of the others, show a linear 
trend on a semilog scale if a constant uniform grid is used, independent of the Reynolds number. 
Consider, for example, the Ghia et al. predictions: they are located on two parallel straight lines 
with a vertical translation at  Re between 3200 and 5000 for which the mesh size is changed; in fact 
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Table I11 

umin(x = 0.5) Vmin(Y = 0.5) umax(Y = 05) 
Re Author 'min Y Umin X Omax X 

1000 Gresho et aL31 
Ghia et a1.8 
Present results 

3200 Gresho et aL31 
Ghia et aL8 
Present results 

5000 Gresho et aL3' 
Ghia et aL8 
Present results 

- 0375 
- 0.388 
- 0.378 
- 0.420 
- 0.419 
- 0.404 
- 0426 
- 0.436 
- 0.399 

0.160 
0.172 
0.176 
0.084 
0-102 
0.095 

0074 
0.070 
0.075 

- 0.516 
- 0516 
- 0.514 

- 0.560 
- 0-541 
- 0.528 

- 0563 
- 0.554 
- 0.516 

0.906 
0.906 
0.905 
0.945 
0-945 
0.945 

0906 
0.953 
0.955 

0-362 
0.371 
0.368 
041 5 
0428 
0.403 

0419 
0.436 
0.404 

0.160 
0.156 
0.155 
0094 
0.094 
0.105 

0074 
0.078 
0.085 
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Figure 5. Driven cavity: size of downstream secondary vortex D 3 (  = DJD) 

they are computed with 129 x 129 and 257 x 257 grid points respectively. The smallest value of the 
experimental results is due25 mainly to Taylor-Gortler-like vortices connected with the three- 
dimensionality of the flow field. Reynolds numbers greater than 5000 are not considered, because a 
grid size finer than 100 x 100 would be required in order to resolve the fine details of the flow. 
Koseff et d2' also observed the onset of turbulence at Re N 6000. 

6. BACKWARD-FACING STEP 

The backward-facing step is considered to verify the stability and accuracy of the proposed 
method when analysing an inflow-outflow problem. A sketch of the integration domain, boundary 
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Figure 7. Backward-facing step: non-dimensional size of primary vortex (x, / S )  

conditions and nomenclature of the eddies is shown in Figure 6. The Reynolds number is 
defined26 using the mean velocity in the inlet section and twice its height as reference velocity 
and length respectively. The solutions at Re N 800 are obtained with 40 x 101 grid points for 
an expansion ratio of 1.95, the same as in the experiments of Armaly et ~ 1 . ~ ~  

The length of the computational domain is chosen equal to about three times the experimentally 
measured length of the primary vortex.26 A parabolic u velocity profile is imposed at the inflow 
boundary together with a zero vertical velocity u. Non-slip and impermeability conditions are 
enforced on solid walls and Neumann conditions for both u and u are imposed at the outflow 
boundary. It is noteworthy that almost identical results are obtained if fully developed Dirichlet 
conditions (u parabolic, v zero) are used also at the outflow. as already found by Kim and M ~ i n ~ ~  
using u, v, P variables. 

Figure 7 shows the reattachment length of the primary vortex as a function of Reynolds 
number. 

The present predictions are compared with the experimental measurements of Armaly et ~ 1 . ~ ~  
and with the numerical results of Armaly et u E . , ~ ~  Kim and M ~ i n ~ ~  and Orlandi.22 Good 
agreement is found withexperiment (maximum difference 15% at Re = 800) and almost perfect 
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Figure 8. Backward-facing step: non-dimensional size of X,, X ,  

correspondence is achieved with Kim and M ~ i n ~ ~  who use 100 x 100 mesh points. The 
reattachment lengths found by Orlandi22 are in lesser agreement with the experiments, owing to 
the use of a coarser non-uniform mesh (20 x 50). The Armaly et ~ 1 . ~ ~  numerical predictions are, as 
observed also by Kim and M ~ i n , ~ ~  inaccurate at Re = 400, owing to the use of an upwind scheme 
for the treatment of the convective term. The predicted locations of the detachment and 
reattachement lengths of the upper secondary eddy as a function of Re are shown in Figure 8 in 
comparison with available experimental26 and numerica122*26 results. The trend of both position 
and dimension with Re is in very good agreement with the experimental results.26 

7. CONCLUSIONS 

The test cases considered, in the steady state flow at high Reynolds numbers, have highlighted 
several attractive features of the proposed numerical method based on the Navier-Stokes 
equations in term of the physical variables o, u, u: 

(1) The results are as accurate as those obtained by the standard w-$ or u, u, P formulation if an 
equivalent second-order accurate spatial discretization is adopted for all three forms. 

(2) The solution algorithm, based on a false time-dependent procedure and on the parabolized 
form of the Poisson velocity equations, is particularly stable and eficient in that an AD1 
method is adopted for each equation. 

(3) The conservative formulation of convective terms and the staggered location of velocity 
components have demonstrated an exact mass and mean vorticity conservation, the order of 
magnitude of the residual of the continuity equation and Stokes theorem equalling the order 
of magnitude of the residual of the vorticity equations. 
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